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Abstract This work focuses on the Kronecker power series solution of the explicit
conical ODEs. This means that the Kronecker power series of the descriptive function
vector of the ODEs has only zeroth, first and second Kronecker powers of the unknowns
hence the only nonvanishing matrix coefficients are F0, F1 and F2. We focus on the
cases where F0 also vanishes. These enable us to get and solve a two block term
recursive ODE and the accompanying initial conditions. The resulting Kronecker
power series’ kernel can be expressed as a binary product whose first factor which in
square matrix type and a second factor which is in purely rectangular matrix algebraic
structure. The constancy adding space extension separates the temporal behavior of
the kernel in a scalar first factor while the second factor is again in rectangular matrix
structure. We also show that the definition and use of rectangular eigenvalue problem
takes us to constant solution of the original ODEs.

Keywords Dynamical systems · Ordinary differential equations ·
Kronecker or direct products · Kronecker or direct power series ·
Spectral decompositions

1 Introduction

Probabilistic evolution approach (PEA) is a novel theory which may be applied to the
solutions of the initial value problems of ordinary differential equations [1–33]. It relies
on series expansions similar to Taylor series. This is the companion to the paper entitled
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Istanbul Teknik Üniversitesi, Bilişim Enstitüsü, 34469 Maslak, Istanbul, Turkey
e-mail: cosargozukirmizi@gmail.com; gozukirmizic@itu.edu.tr

M. Demiralp
e-mail: metin.demiralp@gmail.com

123



882 J Math Chem (2014) 52:881–898

“Probabilistic evolution approach for the solution of explicit autonomous ordinary
differential equations, Part 1: Arbitrariness and equipartition theorem in Kronecker
power series” appearing in the same issue.

Probabilistic evolution approach is not based on discretization. Discretization meth-
ods are powerful tools and are quite appropriate for programming in computers [34–
46]. The method proposed here is based on Taylor series, or more generally Kronecker
power series. Probabilistic evolution equation obtained from the original set of equa-
tions is an infinite-dimensional linear equation the exact solution of which may be
given in a formal way. In order to obtain numerical results, series truncations should
be performed which in turn truncate the vectors and matrices of solution of probabilis-
tic evolution equation. As a final statement of this paragraph, probabilistic evolution
approach is a global approximation method. For this reason it is not open to error
accumulation coming from recursive nature of discretization techniques. However,
this does not imply a strict convergence in the truncation approximants. Our recent
efforts focus on getting sufficiently rapid convergence when it exists. We also study
on how to converge or get analytic continuation within this context.

First order ODE sets with analytic descriptive functions (which do not contain
derivatives of unknowns at the right hand side while the left hand side includes only
one unknown’s derivative) can be converted to an infinite linear set of first order
autonomous and homogeneous ODEs with a constant infinite coefficient matrix. The
accompanying initial conditions are also populated to an infinite set of initial condi-
tions. All these can be accomplished by using a complete basis set of terms functionally
depending on unknown functions such that a new ODE is constructed for each element
of this set. The constant infinite coefficient matrix depends on only the functional struc-
tures of the descriptive functions. The infinite linear ODE set can be formally solved
in an analytic form which expresses the solution as the image of infinite initial vector
under an exponential matrix whose argument is the abovementioned infinite coeffi-
cient matrix multiplied by time. The exponential matrix describes the propagation of
the system while its argument is related to the rate of the propagation, in other words,
the evolution. We call the infinite coefficient matrix “Evolution Matrix”.

If the starting point for the PEA equations is a single ODE then there is just a single
unknown and the basis set is composed of natural number powers of the difference
between the unknown function and the Taylor series expansion point on the real axis. In
this case, the initial vector is composed of the natural number powers of the initial value
of the unknown while the evolution matrix becomes having an upper Hessenberg form
whose each diagonal is generated by just a single term which is in fact proportional to
the Taylor series of the descriptive function. The term, generating the lower neighbor
diagonal to the main diagonal, vanishes when the descriptive function has a zero at the
expansion point. Then upper Hessenberg form turns out to be upper triangular form
which facilitates the spectral analysis of the evolution matrix and generally a discrete
spectrum can appear only. Otherwise a possibility for the existence of continuous
spectrum may arise. We mostly avoid continuous spectrum which corresponds to the
singularities. Hence all analyses for PEA until now have been intensified at the focus
of triangular block cases.

If the target initial ODE set is composed of not just a single but more than one
equations and accompanying initial conditions then the analysis conceptually remains
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the same but the formulae become more comprehensively complicated. This may
necessitate the use of the many indices and multiple sums if the Taylor series expansion
is used as the mathematical tool. This may be avoided, by introducing the Kronecker
power series which enables us to use just a single index in the sums, with the aid of the
vectors and matrices of ordinary linear algebra. Thus, the resulting structures in the
ultimate infinite linear ODE set contain an evolution matrix which is again in an upper
Hessenberg form but this time not in scalar elements, instead, in block elements. The
initial vector of this case also takes a block form composed of the Kronecker power of
the initial vector appearing in the original ODE set’s accompanying initial impositions.
These are the important differences immediately coming to mind in the case of more
than one unknowns.

We can now recall the main conceptual lines of the probabilistic evolution approach
(PEA) by focusing on the following set of equations

ξ̇(t) = f (ξ(t)) , ξ(0) = ain (1)

where all entities symbolized by boldface characters are assumed to be composed of
n elements, all of which are temporally varying except the ones in ain . While ξ(t)
stands for the unknown vector varying in time the vector valued function f is assumed
to be explicitly known. On the other hand, ain which specifies the initial value of the
unknown vector is assumed to be given.

The direct (Kronecker) power expansion of the right hand side (descriptive function
vector) can be explicitly written as follows

f (ξ) =
∞∑

j=0

F j s⊗ j (2)

where each term of the expansion has the product of a coefficient matrix and a direct
power of the system vector. By definition, each element of the system vector denotes
the difference between the corresponding independent variable and expansion point
component.

s ≡
⎡

⎢⎣
s1
...

sn

⎤

⎥⎦ ≡
⎡

⎢⎣
ξ1 − ξ

(r)
1

...

ξn − ξ
(r)
n

⎤

⎥⎦ . (3)

The direct product of s with itself is
[

s1sT . . . snsT
]T which can also be considered

as the direct (or Kronecker) square of s. Also, nth direct power of the system vector

can be given through the recursive relation s ⊗n = [ s1s⊗(n−1)T
. . . sns⊗(n−1)T

]T
. By

convention, zeroth direct power of any vector is just 1 and the first direct power of a
vector is the vector itself. Since (2) should have same type (that is, n × 1) additive
components at its both sides, the matrix coefficient of the j th direct power of s is of
n × n j type. So F0 is just an n element vector composed of the descriptive function
values at the expansion point while the square matrix F1 is the Jacobian matrix of the
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descriptive functions with respect to the unknowns, evaluated at the expansion point.
It is responsible for the stability issues of the system. F2 and all remaining higher
power coefficients are horizontally rectangular matrices. F j ’s type is n × n j .

Now, if we define

x j (t) ≡ s ⊗ j , j = 0, 1, 2, . . . (4)

x(t) ≡
[

x0(t)
T . . . xn(t)T . . .

]T
, (5)

E ≡

⎡

⎢⎢⎢⎢⎣

E0,0 · · · E0, j · · ·
...

. . .
...

. . .

E j,0 · · · E j, j · · ·
...

. . .
...

. . .

⎤

⎥⎥⎥⎥⎦
, (6)

a ≡

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(
ain − ξ (r)

)⊗0

...(
ain − ξ (r)

)⊗ j

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

T

(7)

then we can write

ẋ(t) = Ex(t), x(0) = a. (8)

The formal solution of (8) can be expressed as follows

x(t) = etEa (9)

where the exponential matrix stands for the system’s propagator while E, the system’s
evolution matrix, characterizes the temporal evolution rate of the system. The block
elements of the evolution matrix can be given as follows

E j, j+k−1 ≡
j−1∑

�=1

I ⊗�
n ⊗ Fk ⊗ I ⊗ j−1−�

n , j, k = 0, 1, 2, . . . (10)

Kronecker power expansions containing only two nonzero terms of the infinite
sum are very important because many explicit ODEs can be brought to this form by
appropriate unknown redefinitions (even increasing their populations). Such structures
facilitate the use of two-term recursions for the solution of the initial value problems.
Therefore, the triangular second degree case with

F j = 0 j ∈ {0, 1, . . .}; j �= 1, j �= 2 (11)
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is taken as the main focus of this work. The resulting expansion is then F1s+F2s⊗2, a
multinomial shown by direct power. There is uniqueness for F1s unlike the arbitrariness
in F2s⊗2. This is due to the nature of Kronecker power (which is specific form of the
more abstract entity, direct power, over the ordinary linear algebraic entities).

The rest of the paper is organised as follows. The Sect. 2 covers certain details of the
solution for the two block term recursion appearing in explicit autonomously conical
ODEs. We revisit the separable kernel Kronecker power series and space extension
to always get kernel separability (these are quite recently developed by the second
author) in the Sects. 3 and 4. Section 5 involve the introduction of the telescopic
matrices and the construction of the solution in terms of them, and, the characteristic
initial vectors respectively; while the Sect. 6 completes the paper with concluding
remarks.

2 Two block term recursions in the case of triangular conicality

The block ordinary differential equation involving the Kronecker powers of the basis
set is as follows for the case where the evolution matrix has only two block diagonals,
the main diagonal and its nearest upper neighbor

ẋ j (t) = E j, j x j + E j, j+1x j+1, x j (0) =
(

ain − ξ (r)
)⊗ j

j = 0, 1, 2, . . . (12)

where the nonzero block elements of Evolution Matrix are explicitly given below

E j, j ≡
j−1∑

k=0

I ⊗k
n ⊗ F1 ⊗ I ⊗ j−k−1

n ,

E j, j+1 ≡
j−1∑

k=0

I ⊗k
n ⊗ F2 ⊗ I ⊗ j−k−1

n , j = 0, 1, 2, . . . (13)

each of which is apparently generated from a single matrix, the square matrix F1
and the rectangular matrix F2 respectively. Now the solution of (12) for x j (t) can be
written in the following new recursive form

x j (t) = etE j, j x j (0) +
t∫

0

dτe(t−τ)E j, j E j, j+1x j+1(τ ), j = 0, 1, 2, . . . (14)

Here, only the terms with subscripts j and ( j +1) appear as before. However, this is a
two-term recursion involving integration hence it is free from the unbounded structure
of the differentiation. This can be iterated once to get a relation between not x j (t) and
x j+1(t) but x j (t) and x j+2(t). We obtain
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x j (t) = etE j, j x j (0)

+
t∫

0

dτe(t−τ)E j, j E j, j+1eτE j+1, j+1x j+1(0)

+
t∫

0

dτe(t−τ)E j, j E j, j+1

τ∫

0

dτ1e(τ−τ1)E j+1, j+1

× E j+1, j+2x j+2 (τ1) , j = 0, 1, 2, . . . (15)

Since the summands of (13)’s right hand side are all commutative it is not hard to
show that

etE j, j =
{

etF1
}⊗ j

, j = 0, 1, 2, . . . (16)

If we define

E j, j+1(τ ) ≡ e−τF1 E j, j+1

{
eτF1

}⊗2
, j = 0, 1, 2, . . . (17)

then we can write

x j (t) = etE j, j x j (0) +
t∫

0

dτetE j, j E j, j+1(τ )x j+1(0)

+
t∫

0

dτetE j, j E j, j+1(τ )

τ∫

0

dτ1E j+1, j+2 (τ1) x j+2 (τ1) , j = 0, 1, 2, . . .

(18)

which can be simplified, by using the following integral operator definition over an
arbitrary appropriate f

I j f(t) ≡
t∫

0

dτE j, j+1(τ )f(τ ), j = 0, 1, 2, . . . , (19)

to the much more concise form

x j (t) = etE j, j
[

x j (0) + I j x j+1(0) + I jI j+1x j+2 (t)
]
, j = 0, 1, 2, . . . (20)

This is still recursion, not solution. To get solution we need to eliminate the unknowns
from right hand side. One step iteration above created x j+2(t) while removing x j+1(t)
at the right hand side. If we would realize two consecutive steps involving iteration
then x j+3(t) would be appearing while x j+1(t) is removed at the right hand side. More
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generally, m number of consecutive steps including iteration creates x j+m+1(t) while
x j+1(t) is removed at the right hand side. If m is taken to infinity and then x j+m+1(t)
is expected to be vanishing at that limit, the right hand side becomes unknown free.
Even though the initial values appear at the right hand side they are known entities and
therefore do not bring any unknown entity. All these allow us to write the following
structure

x j (t) = etE j, j

[ ∞∑

k=0

(
k∏

�=1

I j+�−1

)
x j+k(0)

]
, j = 0, 1, 2, . . . (21)

which is the formal solution for the j th Kronecker power of the system’s state vector.
Using the explicit structure of the initial vector x j (0) we get

x j (t) = etE j, j

[ ∞∑

k=0

(
k∏

�=1

I j+�−1

)
a ⊗ j+k

]
, j = 0, 1, 2, . . . (22)

which becomes the solution of the original ODE set when j is taken as 1 and we can
write

ξ(t) ≡ x1(t) = etF1

[ ∞∑

k=0

(
k∏

�=1

I�

)
a ⊗k+1

]
. (23)

3 Rectangular commutativity and kernel separability in Kronecker power series

Although we have a Kronecker Power series in (23) its utilization has certain level
complications which may increase the computational complexity. To reduce these neg-
ativities first we are going to seek a specific case where the temporal and rectangular
matrix algebraic behavior of each summand in Kronecker power series can be factor-
ized. The commutativity between square matrices presents many facilitations. Since
F2 is rectangular while F1 is being square the multiplication between them is defined
for their, only, one ordering if we use the ordinary matrix algebraic commutativity def-
inition. However we can extend the definition (we call these equalities “Rectangular
Commutativity) as follows

F2 (In ⊗ F1) = F1F2, F2 (F1 ⊗ In) = F1F2 (24)

which can be used to obtain

F2

{
In ⊗ etF1

}
= etF1 F2,

F2

{
etF1 ⊗ In

}
= etF1 F2,

F2

{
et1F1 ⊗ et2F1

}
= e(t1+t2)F1 F2 (25)
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where we have used the series representation of the exponential function together with
certain properties of the Kronecker product.

All these permit us to obtain the following reductive equality

E1,2 = F2(t) = etF1 F2, (26)

and for more general purposes,

F2 (t1) et2(In⊗F1)+t3(F1⊗In) = e(t2+t3−t1)F1 F2. (27)

The employment of these findings enables us to write the following explicit structures
for the actions of the operators defined previously, by skipping the intermediate details

I1a ⊗2 =
⎛

⎝
t∫

0

dτeτF1

⎞

⎠F2a ⊗2, (28)

I1I2a ⊗3 = 1

2!

⎛

⎝
t∫

0

dτeτF1

⎞

⎠
2

F2 (In ⊗ F2 + F2 ⊗ In) a ⊗3. (29)

We report the following result for further generalization of these equalities by using
the rectangular commutativity we have defined above.

I1 . . . Ika ⊗k+1 = 1

k!

⎛

⎝
t∫

0

dτeτF1

⎞

⎠
k

Tka ⊗k+1 (30)

where

Tk ≡
k∏

�=1

M�, k = 0, 1, 2, . . . (31)

and

M j ≡
j−1∑

k=0

I ⊗k
n ⊗ F2 ⊗ I ⊗ j−1−k

n . (32)

Everywhere in this formulation we have followed the universal convention which
dictates us that a sum and product is taken equal to 0 and 1 respectively without
regarding to their summands and factors when their upper limits are less than the
lower one.

Now we can rewrite (23) as follows (where T0 is an appropriate type identity matrix)

ξ(t) = etF1

∞∑

j=0

1

j !

⎛

⎝
t∫

0

dτeτF1

⎞

⎠
j

T j a ⊗ j+1 (33)
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which is an infinite sum over the temporal entities, j th of which is defined as the
j th power of the integral of the exponential matrix etF1 between 0 and t , divided by
j !. This term contains not only temporal change but also square matrix character as
algebraic behavior. The j th term of this sum also contains T j which is completely
a matrix algebraic entity. As we know from above, T j is the product of horizontally
rectangular matrices Ms. By definition M j is of n j ×n j+1 type. It maps from the n j+1

dimensional Cartesian space to n j dimensional Cartesian space. In T j a ⊗ j+1 term the
image of a ⊗ j+1 under T j is considered. However this image is created through a
consecutive imaging process. First, the image of a ⊗ j+1 under M j is created. This
image lies in the n j dimensional Cartesian space and its image under M j−1 is cre-
ated in the n j−1 dimensional Cartesian space and so on. If we consider that the n j

dimensional Cartesian spaces are ordered as if from close to far distances in ascend-
ing j values then M matrices can be considered scoping from one Cartesian space
to its first lower dimensional one (from n j dimension to n j−1 dimension), that is,
create the images of the images, as if from far distance to close distance. Thus the
entire effect of the matrix T j on a ⊗ j+1 can be considered as scoping from n j+1

dimensional Cartesian space to the nearest space, n dimensional Cartesian space.
For this reason we call these matrices “Telescope (or Telescopic) Matrices”. All
these mean that the rectangular matrix algebraic factor of the infinite sum’s kernel
in (33) carries in fact a telescoping nature mapping from higher dimensions to n
dimension.

4 Most general and efficient kernel separability

Thus we have shown that the kernel (summand) of the Kronecker power series solution
can be factorized to a temporally varying square matrix and a time invariant rectangular
matrix structure if the matrices F1 and F2 are rectangularly commutative. This however,
truly speaking, condenses the temporal change into a single factor. The matrix algebraic
nature still exists in both factors of the binary product type kernel, square matrix type
for temporally varying factor and rectangular matrix for temporally invariant factor.
The rectangularity in matrix natures is separated out from the squareness.

Let us now consider the following most general form of the conical explicit ODE
sets in Kronecker power series representation

ξ̇(t) = F0 + F1ξ(t) + F2ξ(t)⊗2, ξ(0) = a. (34)

We can extend the space spanned by the vector ξ (t)’s by using the following augmented
unknown vector

xaug(t) ≡

⎡

⎢⎢⎢⎣

ξ1(t)
...

ξn(t)
ξn+1(t)

⎤

⎥⎥⎥⎦ ≡
[

ξ(t)
ξn+1(t)

]
(35)
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where ξn+1(t) can be anything in principle. However, we specifically choose it a
temporally invariant entity, a constant in time. The constancy means that its initial
value will remain as its values for all time instances. To get a typographical harmony
in the formulation we will denote its initial value by a(in)

n+1.
In order to facilitate the analysis, permutation matrix

P2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

πT
1

πT
2

...

πT
(n+1)2

⎤

⎥⎥⎥⎥⎥⎥⎦
, (36)

π i =

⎧
⎪⎨

⎪⎩

en2+i/(n+1) if i = kn + k, k = 1, . . . , n

ei−�i/(n+1)� if i �= kn + k, k = 1, . . . , n and i < n2 + n

ei if i ≥ n2 + n

(37)

is utilized. ei stands for the i th Cartesian unit vector of (n +1)2 dimensional space and
has 1 as the only nonzero element located at the i th position. P2 is an (n+1)2×(n+1)2

matrix. It facilitates the use of the vector with blocks ξ(t)⊗2, ξ(t)ξn+1(t), ξn+1(t)ξ(t)
and ξn+1(t)2 respectively instead of xaug(t)⊗2 so that the multiplied blocks may be
seen. Consequently,

⎡

⎢⎢⎢⎢⎢⎣

ξ(t)⊗2

ξ(t)ξn+1(t)

ξn+1(t)ξ(t)

ξn+1(t)2

⎤

⎥⎥⎥⎥⎥⎦
= P−1

2

[
ξ(t)

ξn+1(t)

]⊗2

(38)

holds. By differentiating both sides of (35) with respect to time and then using (34)
we can write

ẋaug(t) = F(aug)
1 xaug(t) + F(aug)

2 xaug(t)
⊗2, xaug(0) = aaug ≡

[
ain

a(in)
n+1

]
(39)

where

F(aug)
1 ≡

⎡

⎣
F1

1
a(in)

n+1

F0

01×n 0

⎤

⎦ , F(aug)
2 ≡

[
F2 0n×n 0n×n 0n×1

01×n2 01×n 01×n 0

]
P−1

2

(40)

In these formulae 0s identify the zero matrices whose types are shown in their
subindices. These equations do not give the final forms of the augmented F1 and
F2 matrices. To explain this we can define
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u j ≡

⎡

⎢⎢⎢⎢⎢⎣

0n2×1

e j

0n×1

0

⎤

⎥⎥⎥⎥⎥⎦
, un+ j ≡

⎡

⎢⎢⎢⎢⎢⎣

0n2×1

0n×1

e j

0

⎤

⎥⎥⎥⎥⎥⎦
, u2n+1 ≡

⎡

⎢⎢⎢⎢⎢⎣

0n2×1

0n×1

0n×1

1

⎤

⎥⎥⎥⎥⎥⎦
; j = 1, 2, . . . , n;

(41)

v j ≡
[

e j

0

]
, j = 1, 2, . . . , n, vn+1 ≡

[
0n×1

1

]
(42)

where e j stands for the j th Cartesian unit vector. These permit us to write the following
(2n + 1) number of scalar identities over the augmented unknown vector and its
Kronecker square

uT
2n+1P−1

2 xaug(t)
⊗2 − ξn+1vT

n+1xaug(t) = 0,

uT
j P−1

2 xaug(t)
⊗2 − ξn+1vT

j xaug(t) = 0,

uT
n+ j P

−1
2 xaug(t)

⊗2 − ξn+1vT
j xaug(t) = 0, j = 1, 2, . . . , n. (43)

These urge us to produce the following (n + 1)(2n + 1) number of vector identities

vi uT
2n+1P−1

2 xaug(t)
⊗2 − ξn+1vi vT

n+1xaug(t) = 0(n+1)×1,

vi uT
j P−1

2 xaug(t)
⊗2 − ξn+1vi vT

j xaug(t) = 0(n+1)×1,

vi uT
n+ j P

−1
2 xaug(t)

⊗2 − ξn+1vi vT
j xaug(t) = 0(n+1)×1,

i = 1, . . . , (n + 1); j = 1, 2, . . . , n (44)

whose left hand side expressions can be added to the right hand side of (39) without
causing any alteration. Thus we can write

ẋaug(t) = F( f aug)
1 xaug(t) + F( f aug)

2 xaug(t)
⊗2,

xaug(0) = aaug ≡
[

ain

a(in)
n+1

]
(45)

where the superscript ( f aug) stands as an abbreviation for the statement “flexible
augmented” and

123



892 J Math Chem (2014) 52:881–898

F( f aug)
1 ≡ F(aug)

1 + a(in)
n+1

n+1∑

i=1

⎛

⎝bi,2n+1vi vT
n+1 +

n∑

j=1

(
bi, j + bi,n+ j

)
vi vT

j

⎞

⎠ ,

F( f aug)
2 ≡ F(aug)

2 −
⎛

⎝
n+1∑

i=1

bi,2n+1vi uT
2n+1 +

n∑

j=1

(
bi, j vi uT

j + bi,n+ j vi uT
n+ j

)
⎞

⎠P−1
2 .

(46)

We have used the fact that ξn+1 ≡ a(in)
n+1 in the formulation of these equalities. bs in last

two equalities stand for arbitrary parameters at this moment. We can use the following
impositions for arbitrary β parameter values to determine bs

F( f aug)
1 ≡ −βIn+1 (47)

where the minus sign at the right hand side is used to get some convenience for our
future needs. This means

bn+1,2n+1 =− β

a(in)
n+1

, bi,2n+1 =− [ F0 ]i

a(in)
n+1

, bn+1,n+i =−bn+1,i , i = 1, 2, . . . , n ,

bi,n+ j =− β

a(in)
n+1

δi, j − [ F1 ]i, j

a(in)
n+1

− bi, j , i, j = 1, 2, . . . , n (48)

where subscripted square brackets notation is used for obtaining the corresponding
element from the vector or matrix under consideration. Therefore, flexible augmented
matrix coefficient is

F( f aug)
2 = F(aug)

2 +
(

β

a(in)
n+1

vn+1uT
2n+1 +

n∑

i=1

[ F0 ]i

a(in)
n+1

vi uT
2n+1

−
n∑

j=1

bn+1, j vn+1

(
uT

j − uT
n+ j

)
−

n∑

i=1

n∑

j=1

bi, j vi

(
uT

j − uT
n+ j

)

+
n∑

i=1

n∑

j=1

[ F1 ]i, j

a(in)
n+1

vi uT
n+ j + β

a(in)
n+1

n∑

i=1

vi uT
n+i

⎞

⎠P−1
2 . (49)

A careful investigation reveals the validities of the following equalities

(
uT

j − uT
n+ j

)
P−1

2 xaug(t)
⊗2 = 0, j = 1, 2, . . . , n (50)
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which enable us to exclude all terms including left hand side expressions from the
formulation and then (49) becomes

F( f aug)
2 = F(aug)

2 +
(

β

a(in)
n+1

vn+1uT
2n+1 +

n∑

i=1

[ F0 ]i

a(in)
n+1

vi uT
2n+1

+
n∑

i=1

n∑

j=1

[ F1 ]i, j

a(in)
n+1

vi uT
n+ j + β

a(in)
n+1

n∑

i=1

vi uT
n+i

⎞

⎠P−1
2 . (51)

Thus the matrix F( f aug)
2 now contains just a single arbitrary parameter, β, only. That

parameter can be used to provide us with certain properties in the formulation we want.
(47) and (51) are now the new matrix coefficients of the extended space representation
of the original ODE set.

The use of (47) and (51) urges us to write

x(t) = e−βt
∞∑

j=0

⎡

⎣
j∏

k=1

Ĵk

⎤

⎦ a ⊗ j+1
in , (52)

Ĵ j g(t) ≡
t∫

0

dτe−βτ

⎛

⎝
j−1∑

k=0

I ⊗k
n ⊗ F( f aug)

2 ⊗ I ⊗ j−1−k
n

⎞

⎠ g(τ ) (53)

where g(t) is any vector valued dimensionally compatible temporal function. This
implies

Ĵ1 . . . Ĵka ⊗k+1 = 1

k!
(

1 − e−βt

β

)k

Tka ⊗k+1 (54)

where

Tk ≡
k∏

�=1

M�, k = 0, 1, 2, . . . (55)

and

M j ≡
j−1∑

k=0

I ⊗k
n ⊗ F( f aug)

2 ⊗ I ⊗ j−1−k
n (56)

and therefore

x(t) = e−βt
∞∑

j=0

1

j !
(

1 − e−βt

β

) j

T j a ⊗ j+1. (57)
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5 Rectangular eigenvalue problem

(57) is a Kronecker power series whose kernel (or summand) has a scalar prefactor
which can temporally vary through an exponential function including function struc-
ture. This prefactor multiplies an n element vector which is the image of a Kronecker
power of the initial vector under the corresponding rectangular T matrix. Thus, the
temporal and matrix algebraic structures become now truly separated. However, this
separation is not the ultimate level of simplification. To get more simplicity we may
focus on the following equation.

F( f aug)
2 φ ⊗2 = ϕφ. (58)

If this equation has at least one solution, that is, one couple of ϕ scalar and φ vector
values then we can write

Mkφ
⊗k+1 = kϕφ ⊗k, Tkφ

⊗k+1 = k!ϕkφ, (59)

Ĵ1 . . . Ĵkφ
⊗k+1 =

(
1 − e−βt

β

)k

ϕkφ, (60)

x(t) = e−βt

1 −
(

1−e−βt

β

)
ϕ

φ. (61)

Thus the solution of the original ODEs can be given through a concise formula as long
as the initial vector is φ.

Now we can investigate the existence of ϕ and φ. To this end we can start with the
following equality

F( f aug)
2 ≡

⎡

⎢⎣
F2 0n×n

1
a(in)

n+1

(F1 + βIn) 1
a(in)

n+1

F0

01×n2 01×n 01×n
β

a(in)
n+1

⎤

⎥⎦P−1
2 (62)

whose utilization in (58) allows us to get the following equations

F2φ
⊗2 + φn+1

a(in)
n+1

(F1 + βIn)φ + φ
2
n+1

a(in)
n+1

F0 = ϕφ
φ

2
n+1

a(in)
n+1

β = ϕφn+1 (63)

where we have used the following partitioning

φ ≡
[

φ

φn+1

]
. (64)
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The (n + 1)th element of the reigenvector should be same as the value of the
constancy used in CASE. Hence we need to take

φn+1 = a(in)
n+1 (65)

which implies

ϕ = β (66)

and therefore

F2φ
⊗2 + F1φ + a(in)

n+1F0 = 0n×1. (67)

The last formula defines an algebraic root finding problem of a set of second degree
multinomials (n number of equations for n unknowns). The existence of the roots,
the number of roots if exist, and, the methods for how to determine them are all
related to the set theoretical and functional analysis based items “ideals”. To this
end, well known and widely used theory is based on Gröbner basis set and the
Buchberger algorithm for practical applications. The roots, one or more than one
set of element values for φ j s ( j = 1, 2, . . . , n) may or may not have real val-
ues. However the solution family is not empty if the complex number values are
considered. Hence, the reigenvalue problem (rectangular eigenvalue problem) above
has at least one solution which describes a position in the space spanned by φ j s

( j = 1, 2, . . . , n). This position depends on a(in)
n+1 or its equivalent φn+1 as long as

the vector F0 remains nonvanishing. Otherwise the point described by the reigen-
vector remains standing at the same position of φ j s ( j = 1, 2, . . . , n) for all
these parameters’ values. All these mean that reigenvector determined as the root
above equations remains on a straight line where φn+1 does not affect the posi-
tion in the space spanned by φ j s ( j = 1, 2, . . . , n + 2), or otherwise, a curve
whose shape is completely determined by φn+1 in the same space spanned by φ j s
( j = 1, 2, . . . , n + 2). We call these lines or curves “Reigen Curves”. Thus, the facil-
itations coming from the rectangular eigenvalue problem solutions will be in action if
and only if the initial vector of the original ODEs is positioned at somewhere on the
reigencurve.

Now the utilization of (66) in (61) takes us to the following very simple result

x(t) = φ (68)

which dictates us that the original ODE set has a constant solution if the initial value
vector in its accompanying imposition is positioned at somewhere on one of reigen-
curves. This result could be obtained directly from the original ODE set without
proceeding in the jungle of so many details of the analysis. However this analysis
indicated that kernel separation is an important issue which may bring unexpectedly
good facilitations.
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6 Conclusion

This has been the second part of two companion papers. In addition to the new findings
and ideas presented in the first part we have arrived at certain important points. How-
ever, despite what we have developed here reveals many important features existing in
the application of Kronecker power series to explicit conical ODEs, they are not at the
end point of the probabilistic evolution theory and the related issues. On the contrary,
they may be considered as the beginnings of new revelations or theories about the
ODEs. We enumerate the important points and remarks below:

1. We have obtained the analytic form of the solution for the initial value problem
of a finite number of explicit conical ODEs. We now know that the solution can
be written in a Kronecker power series form where the summand has analytical
expression.

2. The summand or (additive) kernel of the solution series can be simplified if the
coefficient matrices of the originally given ODE set satisfy certain commutativity
(rectangular commutativity) relations. If this happens then the temporal behavior
of the kernel is condensed in the first factor of a binary product which has also
square matrix structure. The second factor does not contain the time and shows
rectangular matrix structure whose number of columns increases as we proceed
amongst the summands of the relevant Kronecker power series in ascending power
direction.

3. We know that the addition of a constant temporal function to the unknowns as a new
member and therefore increase in the dimension of the unknowns’ space by one,
enable us to get rid of the constant matrix component (F0). Beyond that, by using
the flexibilities appearing in the resulting matrix structures, we can change the first
degree terms coefficient matrix to an identity matrix premultiplied by an arbitrary
constant (β). This structuring facilitates our analysis pretty much and separates the
matrix algebraic nature from the temporal behavior in the kernel, by transferring
the squareness to the rectangularity. This is the full separation of matrix algebra
and temporal change.

4. We now know that the full kernel separability takes us to the constant solution of
the original ODEs if we use the so-called “Rectangular Eigenvalue Problem”. This
also urges us to define rectangular eigencurves or shortly reigencurves.

5. Even though we have not intended to go beyond the constant solution, what we
have obtained here implies that we can possibly obtain different specific structure
solutions by tracing the route we followed when we get the constant solution within
certain level of deviations in methodology. We started to work on these issues, to
get new horizons in the ODE theory.

6. We do not need to get constant solution and we have the expressions to get the
solutions without assuming any rectangular eigen structure. The algorithm seems
to be simple conceptually while certain precautions should be taken for the prac-
tical evaluations in the sense of computation time and the memory utilization in
computers.

Before finalizing these two companion works presentation, what we need to empha-
size on is that this second paper content includes the techniques to extend the capa-
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bilities of the probabilistic evolution approach and to remove possible pitfalls which
may negatively affect the numerical qualities of the truncation approximants.
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İstanbul, Turkey, 2012), pp. 224–228, ISBN: 978-1-61804-115-9

25. B. Kalay, M. Demiralp, in Proceedings of the 12th WSEAS International Conference on Systems Theory
and Scientific Computation (ISTASC12), ed. by D. Biolek, N.A. Baykara (WSEAS Press, İstanbul,
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İstanbul, Turkey, 2012), pp. 181–186, ISBN: 978-1-61804-115-9

32. S. Bayat, M. Demiralp, in Proceedings of the 13th WSEAS International Conference on Mathematics
and Computers in Biology and Chemistry (World Scientific and Engineering Academy and Society
(WSEAS), Stevens Point, Wisconsin, USA, 2012), MCBC’12, pp. 57–62

33. T. Öztürk, M. Demiralp, in Proceedings of the 13th WSEAS International Conference on Mathematics
and Computers in Biology and Chemistry (World Scientific and Engineering Academy and Society
(WSEAS), Stevens Point, Wisconsin, USA, 2012), MCBC’12, pp. 63–68

34. A. Kosti, Z. Anastassi, T. Simos, J. Math. Chem. 47(1), 315 (2010)
35. T. Simos, J. Chem. Phys. 133, 104108 (2010)
36. Z. Kalogiratou, T. Monovasilis, T. Simos, Comput. Math. Appl. 60(6), 1639 (2010)
37. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Comput. Phys. Commun. 181(7), 1251 (2010)
38. T. Simos, Acta Applicandae Mathematicae 110(3), 1331 (2010)
39. S. Stavroyiannis, T. Simos, Comput. Phys. Commun. 181(8), 1362 (2010)
40. D. Papadopoulos, T. Simos, Int. J. Mod. Phys. C 22(06), 623 (2011)
41. C. Tsitouras, I.T. Famelis, T. Simos, Comput. Math. Appl. 62(4), 2101 (2011)
42. T.E. Simos, Cent. Eur. J. Phys. 9(6), 1518 (2011)
43. G. Panopoulos, Z. Anastassi, T. Simos, Int. J. Mod. Phys. C 22(02), 133 (2011)
44. G. Panopoulos, Z.A. Anastassi, T.E. Simos, Comput. Phys. Commun. 182(8), 1626 (2011)
45. T. Simos, J. Math. Chem. 49(10), 2486 (2011)
46. T. Monovasilis, Z. Kalogiratou, T. Simos, Int. J. Mod. Phys. C 22(12), 1343 (2011)

123

http://dx.doi.org/10.1063/1.4756582

	Probabilistic evolution approach for the solution  of explicit autonomous ordinary differential equations. Part 2: Kernel separability, space extension, and, series solution via telescopic matrices
	Abstract
	1 Introduction
	2 Two block term recursions in the case of triangular conicality
	3 Rectangular commutativity and kernel separability in Kronecker power series
	4 Most general and efficient kernel separability
	5 Rectangular eigenvalue problem
	6 Conclusion
	References


